
1

15. December, 2021

v1.0: 06. November, 2021

v1.1: 10. November, 2021

Disclaimer	 3

Description	 5

Project Engagement	 5

Logo	 5

Contract Link	 5

Methodology	 7

Used Code from other Frameworks/Smart Contracts (direct imports)	 8

Tested Contract Files	 9

Source Lines	 10

Risk Level	 10

Capabilities	 11

Scope of Work	 13

Inheritance Graph	 13

Verify Claims	 14

OnlyOwner functions	 22

CallGraph	 23

Source Units in Scope	 24

Critical issues	 26

High issues	 26

Medium issues	 26

Low issues	 26

Informational issues	 27

Audit Comments	 28

MetaWalls Test Protocol	 31

SWC Attacks	 34

2

Disclaimer

SolidProof.io reports are not, nor should be considered, an “endorsement”
or “disapproval” of any particular project or team. These reports are not,
nor should be considered, an indication of the economics or value of any
“product” or “asset” created by any team. SolidProof.io do not cover
testing or auditing the integration with external contract or services (such
as Unicrypt, Uniswap, PancakeSwap etc’...)

SolidProof.io Audits do not provide any warranty or guarantee
regarding the absolute bug- free nature of the technology analyzed,
nor do they provide any indication of the technology proprietors.
SolidProof Audits should not be used in any way to make decisions
around investment or involvement with any particular project. These
reports in no way provide investment advice, nor should be leveraged
as investment advice of any sort.

SolidProof.io Reports represent an extensive auditing process intending
to help our customers increase the quality of their code while reducing
the high level of risk presented by cryptographic tokens and blockchain
technology. Blockchain technology and cryptographic assets present a
high level of ongoing risk. SolidProof’s position is that each company and
individual are responsible for their own due diligence and continuous
security. SolidProof in no way claims any guarantee of security or
functionality of the technology we agree to analyze.

Version Date Description

1.0 06. November 2021 • Layout project

• Automated- /Manual-Security

Testing

• Summary

1.1 10. November 2021 • Reaudit

2.0 15. December 2021 • New contracts

3

http://SolidProof.io

Network

Polygon POS Chain

Website

https://www.metawalls.io/

Twitter

https://twitter.com/Metawalls_bln

Facebook

https://www.facebook.com/metawalls/

Youtube	

https://www.youtube.com/channel/UCmCq7eDzGwRy8H7H_19VakA

Discord 	

https://discord.gg/y6qQZhV5rv

Instagram

https://www.instagram.com/metawalls_bln/

4

https://www.metawalls.io/
https://twitter.com/Metawalls_bln
https://www.facebook.com/metawalls/
https://www.youtube.com/channel/UCmCq7eDzGwRy8H7H_19VakA
https://discord.gg/y6qQZhV5rv
https://www.instagram.com/metawalls_bln/

Description

METAWALLS is the new NFT platform inspired by, and built for Berlin’s
artists. METAWALLS is bringing Berlin’s vibrant Street Art culture into the
Metaverse and the world of blockchain.

METAWALLS wants to help reform the art market, and this means for us
facilitating more equality, participation, and empowerment for artists and
art buyers alike through our revolutionary CO-NFT (Collective-Ownership
NFT) platform.

The unique design and features of CO-NFT will empower a global
community of art lovers to support and engage directly with Berlin’s
unique Street Art culture in ways not previously possible.

METAWALLS runs on Polygon, an energy-efficient ‘Proof of Stake’
blockchain. Polygon provides users with secure, low cost transactions
24/7.

Project Engagement

During the 03rd of November 2021, MetaWalls Team engaged
Solidproof.io to audit smart contracts that they created. The engagement
was technical in nature and focused on identifying security flaws in the
design and implementation of the contracts. They provided Solidproof.io
with access to their code repository and whitepaper.

Logo

Contract Link

v1.0/1.1/2.0
TBA

5

Vulnerability & Risk Level
Risk represents the probability that a certain source-threat will exploit
vulnerability, and the impact of that event on the organization or system.
Risk Level is computed based on CVSS version 3.0.

Level Value Vulnerability Risk (Required Action)

Critical 9 - 10

A vulnerability that
can disrupt the
contract functioning
in a number of
scenarios, or creates a
risk that the contract
may be broken.

Immediate action to
reduce risk level.

High 7 – 8.9

A vulnerability that
affects the desired
outcome when using
a contract, or provides
the opportunity to
use a contract in an
unintended way.

Implementation of
corrective actions as

soon aspossible.

Medium 4 – 6.9

A vulnerability that
could affect the
desired outcome of
executing the
contract in a specific
scenario.

Implementation of
corrective actions in a

certain period.

Low 2 – 3.9

A vulnerability that
does not have a
significant impact on
possible scenarios for
the use of the
contract and is
probably subjective.

Implementation of
certain corrective

actions or accepting
the risk.

Informational 0 – 1.9

A vulnerability that
have informational
character but is not
effecting any of the
code.

An observation that
does not determine a

level of risk

6

Auditing Strategy and Techniques
Applied
Throughout the review process, care was taken to evaluate the repository
for security-related issues, code quality, and adherence to specification
and best practices. To do so, reviewed line-by-line by our team of expert
pentesters and smart contract developers, documenting any issues as
there were discovered.

Methodology

The auditing process follows a routine series of steps:

1. Code review that includes the following:

i) Review of the specifications, sources, and instructions provided to SolidProof
to make sure we understand the size, scope, and functionality of the smart
contract.

ii) Manual review of code, which is the process of reading source code line-by-
line in an attempt to identify potential vulnerabilities.

iii) Comparison to specification, which is the process of checking whether the
code does what the specifications, sources, and instructions provided to
SolidProof describe.

2. Testing and automated analysis that includes the following:

i) Test coverage analysis, which is the process of determining whether the test

cases are actually covering the code and how much code is exercised when
we run those test cases.

ii) Symbolic execution, which is analysing a program to determine what inputs
causes each part of a program to execute.

3. Best practices review, which is a review of the smart contracts to improve efficiency,
effectiveness, clarify, maintainability, security, and control based on the established
industry and academic practices, recommendations, and research.

4. Specific, itemized, actionable recommendations to help you take steps to secure
your smart contracts.

7

Used Code from other Frameworks/Smart
Contracts (direct imports)

v1.0/1.1

Imported packages:

v2.0

Imported packages:

8

Tested Contract Files

This audit covered the following files listed below with a SHA-1 Hash.

A file with a different Hash has been modified, intentionally or otherwise,
after the security review. A different Hash could be (but not necessarily)
an indication of a changed condition or potential vulnerability that was
not within the scope of this review.

v1.0

v1.1

V2.0 

9

Metrics
Source Lines

v1.0		 	 	 	 v2.0

Risk Level

v1.0		 	 	 	 v2.0

10

Capabilities

Components

Exposed Functions

This section lists functions that are explicitly declared public or payable.
Please note that getter methods for public stateVars are not included.

Version Contracts Libraries Interfaces Abstract

1.0 7 1 0 1

2.0 6 1 0 1

11

State Variables

Capabilities

Version Public Payable

1.0 33 1

1.1 39 1

2.0 31 1

Version External Internal Private Pure View

1.0 1 25 2 5 24

1.1 1 37 5 8 26

2.0 1 40 2 10 24

Version Total Public

1.0 16 6

1.1 17 6

2.0 16 4

Version
Solidity
Versions
observed

Experim
ental
Features

 Can
Receive
Funds

Uses
Assembl
y

Has
Destroya
ble
Contract
s

1.0 ^0.8.0  
>=0.8.0
<0.9.0

yes
yes  
(2 asm
blocks)

Version
Transf
ers
ETH

Low-
Level
Calls

Delega
teCall

Uses
Hash
Functi
ons

ECRec
over

New/
Create/
Create
2

1.0 yes yes

12

Scope of Work

The above token Team provided us with the files that needs to be tested
(Github, Bscscan, Etherscan, files, etc.). The scope of the audit is the main
contract (usual the same name as team appended with .sol).

We will verify the following claims:

1. Correct implementation of Token standard

2. Deployer cannot mint any new tokens

3. Deployer cannot burn or lock user funds

4. Deployer cannot pause the contract

5. Overall checkup (Smart Contract Security)

Inheritance Graph

v1.0

v2.0

13

Verify Claims

Correct implementation of Token standard

Tested Verified

✓ ✓
Function Description Exist Tested Verified

TotalSupply provides information about the total
token supply ✓ ✓ ✓

BalanceOf provides account balance of the
owner's account ✓ ✓ ✓

Transfer
executes transfers of a specified
number of tokens to a specified

address
✓ ✓ ✓

TransferFrom
 executes transfers of a specified

number of tokens from a specified
address

✓ ✓ ✓
Approve

allow a spender to withdraw a set
number of tokens from a specified

account
✓ ✓ ✓

Allowance returns a set number of tokens from
a spender to the owner ✓ ✓ ✓

14

Write functions of contract

V1.0		 	 	 v1.1

 

15

Changes

v2.0

 

16

Deployer cannot mint any new tokens

Comments:

v1.0

• batchMint function

• Only creators can mint

• create

• onlyOwner can create/mint

• createMasterPiece

• onlyOwner can create/mint

• mintItemWithTokenURI

• onlyOwner can create/mint

• mintBatchItemsWithTokenURI

• onlyOwner can create/mint

	

v1.1

• batchMint function

• Removed

• onlyOwner changed to onlyOperatorOrOwner

• onlyOwner can mint

v2.0

• Only MINTER_ROLE

• _create

	

Name Exist Tested Verified File

Deployer cannot
mint ✓ ✓ ✘ Main

Comment Line: -

17

Deployer cannot burn or lock user funds

Comments:

v1.0

• _burn function is used in subBlend function

Version Name Exist Teste
d Verified

1.0 Deployer
cannot lock ✓ ✓ ✓

1.0 cannot burn ✓ ✓ ⚑
1.1 cannot burn ✓ ✓ ✘

2.0 cannot burn ✓ ✓ ✘

18

V1.1

v2.0

Burn function added

19

Deployer cannot pause the contract

Name Exist Tested Verified

Deployer cannot
pause ✓ ✓ ✓

20

Overall checkup (Smart Contract Security)

Legend

Tested Verified

✓ ✓

Attribute Symbol

Verfified / Checked ✓
Partly Verified ⚑

Unverified / Not checked ✘

Not available -

21

OnlyOwner functions

V1.0

• setURI

• Create

• createMaserPiece

• mintItemWithTokenURI

• mintBatchItemsWithTokenURI

• reserveNextTokenID

• incrementTokenTypeId

V1.1

• onlyOwner

• incrementTokenTypeId

• reserveNextTokenID

• createMasterPiece

• incrementTokenTypeId

• onlyOperatorOrOwner

• mintBatchItemsWithTokenURI

• mintItemWithTokenURI

• transferOperatorRole

v2.0

• onlyOwner

• setNextTokenId

• setProxyAddress

• onlyRole (MINTER_ROLE)

• createMasterPiece

• mintItemWithTokenURI

• mintItemWithTokenURIEx

• mintBatchItemsWithTokenURI

• masterPieceExists

• mintItemWithTokenURI

• mintItemWithTokenURIEx

• mintBatchItemsWithTokenURI

22

CallGraph

23

Source Units in Scope

v1.0

v1.1

v2.0

Legend

24

Attribute Description

Lines total lines of the source unit

nLines normalized lines of the source unit (e.g. normalizes functions
spanning multiple lines)

nSLOC normalized source lines of code (only source-code lines; no
comments, no blank lines)

Comment Lines lines containing single or block comments

Complexity Score
a custom complexity score derived from code statements that
are known to introduce code complexity (branches, loops, calls,
external interfaces, ...)

25

Audit Results

Critical issues

- no critical issues found -

High issues

- no high issues found -

Medium issues

- no medium issues found -

Low issues

Versi

on
Issue File Type Line Description

1.0 #1 Main A floating pragma is
set

5 The current pragma
Solidity directive is
„“>=0.8.0 <0.9.0

"".

1.1 #2 ERC115
5Trada
ble

Missing Zero Address
Validation

67 Check that the address is
not zero

1.1 #3 ERC115
5Trada
ble

State variable
visibility is not set.

41, 38 It is best practice to set the
visibility of state variables
explicitly.

2.0 #4 MetaW
alls

Missing Zero Address
Validation

89, 435 Check that the address is
not zero

2.0 #5 Builder Missing Zero Address
Validation

50 Check that the address is
not zero

2.0 #6 MetaW
alls

Local variables
shadowing

442 _owner shadows
Ownable._owner state
variable

Rename the local variables
that shadow another
component

26

AUDIT PASSED

Informational issues

2.0 #7 MetaW
alls

A floating pragma is
set

5 The current pragma
Solidity directive is
„“>=0.8.0 <0.9.0

"".

2.0 #8 GridMa
th

Source file does not
specify required
compiler version

/ Consider adding "pragma
solidity ^0.8.2;"

Versi
on

Issue File Type Line Description

1.0 #1 MetaW
allsCoi
n

Functions that are
not used

76-79,
81-84

Remove unused functions

2.0 #2 GridMa
th

Functions that are
not used

4, 9 Remove unused functions

2.0 #3 MetaW
alls

Functions that are
not used

229 Remove unused functions

2.0
 #4
 GridMa
th

SPDX license
identifier not
provided

/ Before publishing,
consider adding a
comment containing
"SPDX-License-Identifier:
<SPDX-License>" to each
source file.

27

Audit Comments

V1.0: 06. November 2021:

• Openzeppelin-solidity/contracts library is deprecated

• Used in files:

• ERC1155Tradeable

• MetaWallsCoin

• NativeMetaTransaction

• Following files were borrowed from OpeanSea (Source: https://

github.com/ProjectOpenSea/opensea-creatures)

• Meta-transactions directory

• ContextMixin

• EIP712Base

• Initializable

• NativeMetaTransaction

• ERC1155Tradable

• Anyone can set creator

V1.1: 10. November 2021:

• MetaWalls.sol

• New in file:

• AccessControl removed

• ERC1155Burnable added

• Contract name MetaWallsCoin changed to MetaWalls

• Struct PieceItem

• Added:

• Bool isToBeBlend

• Bool isToBeCracked

Source: https://www.npmjs.com/package/openzeppelin-
solidity, Sat 6. Nov. 11:48 AM

28

https://github.com/ProjectOpenSea/opensea-creatures
https://github.com/ProjectOpenSea/opensea-creatures

•

29

New modifier

New functions added

v2.0: 15. December 2021:

• Import OpenZeppelin with @ at the start and use @openzeppelin/

contracts instead of openzeppelin-solidity (see v1.0 comments above) 

30

New functions added

MetaWalls Test Protocol

Used NFT library (with modifications)

https://github.com/ProjectOpenSea/opensea-creatures

Proxy address on Rinkeby network:

0xF57B2c51dED3A29e6891aba85459d600256Cf317

Proxy address on other networks:

0xa5409ec958c83c3f309868babaca7c86dcb077c1

Testnet address (owner)

0xd07fDB68bbcA2A00f9694Ffe0A05472687C0af83

Note: This library was borrowed from OpenSea in order to get OpenSea-Compatibility 
The condition in the deploy.js file to select the proxy address is always true.

Compiling successful

Compiling 22 files with 0.8.2

Generating typings for: 24 artifacts in dir: typechain for target: ethers-v5

Successfully generated 33 typings!

Compilation finished successfully

All Unit Tests successful

40 passing (7s)

Deployment to Rinkeby testnet over infura.io successful

Contract address: 0xBFA1AB6CF738CD1377Fa134d0d62cD79bc8e85EF

Transaction:	
0x7abbc0497fa4678e5e26d9953039b751eaa081676277476f9a10f6bc7b9000d3

Verification of the contract files successful

Nothing to compile

No need to generate any newer typings.

Compiling 1 file with 0.8.2

Successfully submitted source code for contract

contracts/MetaWallsCoin.sol:MetaWallsCoin at
0xbfa1ab6cf738cd1377fa134d0d62cd79bc8e85ef

for verification on Etherscan. Waiting for verification result...

Successfully verified contract MetaWallsCoin on Etherscan.

https://rinkeby.etherscan.io/address/
0xbfa1ab6cf738cd1377fa134d0d62cd79bc8e85ef#code

Creation of a MasterPiece successful

Transaction: https://rinkeby.etherscan.io/tx/
0x165a31a7fb0345f177592f7cec3602d91397ced72403ef931e3130d2cad00a88

31

http://infura.io
https://rinkeby.etherscan.io/address/0xbfa1ab6cf738cd1377fa134d0d62cd79bc8e85ef#code
https://rinkeby.etherscan.io/address/0xbfa1ab6cf738cd1377fa134d0d62cd79bc8e85ef#code
https://rinkeby.etherscan.io/tx/0x165a31a7fb0345f177592f7cec3602d91397ced72403ef931e3130d2cad00a88
https://rinkeby.etherscan.io/tx/0x165a31a7fb0345f177592f7cec3602d91397ced72403ef931e3130d2cad00a88

Minting of Co-NFT successful

Transaction of creation: https://rinkeby.etherscan.io/tx/
0x322534d277591ef23dd6216b83ff89142fdab4dba15afe9adfed4ae0f64a8566

Transaction failed if MasterPiece doesn’t exists: https://rinkeby.etherscan.io/tx/
0x374a5d7592c8c585ff796d81d95bdbdcef4d01dd8e652364d9f3655f6b348884

Sub-blend of two Co-NFT’s successful

Transaction: https://rinkeby.etherscan.io/tx/
0xaca04c084ec34495bcbd28ea9ea37012cc614b5d341ec33971ac2b602f9fbb21

The two items will be deleted and a new MasterPiece will be created. After a sub-blend
transaction the items are still visible in the itemExists function.

Checking read-only functions

balanceOf 	 	 	 success

exists	 	 	 	 success

getChainId	 	 	 success

itemExists	 	 	 success

item	 	 	 	 no return if item doesn’t exists

masterPieceDimensions	 no return if MasterPiece doesn’t exists

masterPieceItems 	 	 success

masterPieceItemAt		 success

masterPieceItemsLength	success

masterPieceMaxX	 	 success

masterPieceMaxY	 	 success

Additional due to V2

Compiling successful

Compiling 26 files with 0.8.2

Generating typings for: 26 artifacts in dir: typechain-types for target: ethers-v5

Successfully generated 41 typings!

Compilation finished successfully

Deployment

All contracts were deployed on local running blockchain node. No excessive gas usages
were detected.

Conclusion

Custom claims were not specified, the basic functions that can be constructed from
the unit tests were tested.

The contract is safe to deploy and basic logic errors were not detected. The code is
written to the best standard and sufficiently commented. Known risks were checked by
the auditor and the code was scanned for other vulnerabilities as well.

All unit tests make sense and have also been checked. Logic errors could not be found
here either.

32

https://rinkeby.etherscan.io/tx/0x322534d277591ef23dd6216b83ff89142fdab4dba15afe9adfed4ae0f64a8566
https://rinkeby.etherscan.io/tx/0x322534d277591ef23dd6216b83ff89142fdab4dba15afe9adfed4ae0f64a8566
https://rinkeby.etherscan.io/tx/0x374a5d7592c8c585ff796d81d95bdbdcef4d01dd8e652364d9f3655f6b348884
https://rinkeby.etherscan.io/tx/0x374a5d7592c8c585ff796d81d95bdbdcef4d01dd8e652364d9f3655f6b348884
https://rinkeby.etherscan.io/tx/0xaca04c084ec34495bcbd28ea9ea37012cc614b5d341ec33971ac2b602f9fbb21
https://rinkeby.etherscan.io/tx/0xaca04c084ec34495bcbd28ea9ea37012cc614b5d341ec33971ac2b602f9fbb21

All Unit Tests successful

 39 passing (7s)

 Token
 ✓ calculates the grid correctly

 Security: everything is setup as expected
 ✓ Chantal is owner

 ✓ Axel is NOT an owner

 ✓ Ben is NOT an owner

 Item existence can be checked correctly
 ✓ itemExists for non-existing item works correctly

 ✓ item() for non-existing item reverts correctly

 Tokenization tests: creation of MasterPieces and minting of Co-NFTs
 ✓ non-owner are not allowed to mint a master piece

 ✓ Chantal as owner can create a master piece

 can not ask for data on non-existing tokens
 ✓ can' read data from non-existing tikens

 can not do things on non-existing Master-Pieces
 ✓ can' read data from non-existing master piece

 ✓ can' read countX from non-existing master piece

 ✓ can' read countY from non-existing master piece

 ✓ can' read items from non-existing master piece

 ✓ can' read item from non-existing master piece

 ✓ can' read items-length from non-existing master piece

 ✓ can' mint Co-NFT for non-existing master piece

 minting Co-NFTs of a master piece
 ✓ has the right bounds/dimensions

 ✓ all Co-NFT items are set to zero

 ✓ should mint tokens to Axel successfully

 ✓ should mint tokens with Custom URI successfully

 ✓ it can mix tokens with custom URIs and the base URI properly

 ✓ won't allow to mint a Co-NFT out of bounds of master-piece

 transfer of token should be work properly
 ✓ axel can transfer token to ben

 ✓ axel can't transfer token again to ben

 Batch Minting
 ✓ can be minted as batch

 ✓ can event be minted as batch with empty uris

 Burning on behalf of the user
 ✓ axel is allowed to burn his own tokens

 ✓ a non-burning role will NOT be able to burn other users token

 Grid
 ✓ calculates the index in a grid correctly

 Special Co-NFT capabilities
 tooling works properly

 ✓ isRectangle will detect rectangle

 ✓ isRectangle will detect a non-rectangle properly

 ✓ isRectangle will detect a wrong list of xs/ys properly

 Sub Blending works properly
 Sub Blending Example 1
 will detect rectangle correctly
 ✓ will detect the full rectangle correctly

 ✓ will detect the top-left corner as rectangle correctly

 ✓ will detect the right-bottom corner as rectangle correctly

 ✓ will detect the middle area as rectangle correctly

 ✓ will detect a non-rectangle correctly

 ✓ will detect non-existing items correctly

 can sub-blend a square successfully
 ✓ will emit burn and mint events properly

Disclaimer

We have checked and verified the code to the best of our knowledge. However, deeper
logic errors cannot be excluded and Solidproof.io cannot be held liable for any damage
that may occur. 

33

SWC Attacks

ID Title Relationships Status

SW
C-13
6

Unencrypted
Private Data
On-Chain

CWE-767: Access to Critical
Private Variable via Public
Method

PASSED

SW
C-13
5

Code With No
Effects

CWE-1164: Irrelevant Code PASSED

SW
C-13
4

Message call
with
hardcoded gas
amount

CWE-655: Improper
Initialization PASSED

SW
C-13
3

Hash Collisions
With Multiple
Variable
Length
Arguments

CWE-294: Authentication
Bypass by Capture-replay PASSED

SW
C-13
2

Unexpected
Ether balance

CWE-667: Improper Locking PASSED

SW
C-13
1

Presence of
unused
variables

CWE-1164: Irrelevant Code PASSED

SW
C-13
0

Right-To-Left-
Override
control
character
(U+202E)

CWE-451: User Interface (UI)
Misrepresentation of Critical
Information

PASSED

SW
C-12
9

Typographical
Error

CWE-480: Use of Incorrect
Operator PASSED

SW
C-12
8

DoS With Block
Gas Limit

CWE-400: Uncontrolled
Resource Consumption PASSED

34

https://swcregistry.io/docs/SWC-136
https://cwe.mitre.org/data/definitions/767.html
https://swcregistry.io/docs/SWC-135
https://cwe.mitre.org/data/definitions/1164.html
https://swcregistry.io/docs/SWC-134
https://cwe.mitre.org/data/definitions/665.html
https://swcregistry.io/docs/SWC-133
https://cwe.mitre.org/data/definitions/294.html
https://swcregistry.io/docs/SWC-132
https://cwe.mitre.org/data/definitions/667.html
https://smartcontractsecurity.github.io/SWC-registry/docs/SWC-131
https://cwe.mitre.org/data/definitions/1164.html
https://smartcontractsecurity.github.io/SWC-registry/docs/SWC-130
http://cwe.mitre.org/data/definitions/451.html
https://smartcontractsecurity.github.io/SWC-registry/docs/SWC-129
https://cwe.mitre.org/data/definitions/480.html
https://smartcontractsecurity.github.io/SWC-registry/docs/SWC-128
https://cwe.mitre.org/data/definitions/400.html

SW
C-12
7

Arbitrary Jump
with Function
Type Variable

CWE-695: Use of Low-Level
Functionality PASSED

SW
C-12
5

Incorrect
Inheritance
Order

CWE-696: Incorrect Behavior
Order PASSED

SW
C-12
4

Write to
Arbitrary
Storage
Location

CWE-123: Write-what-where
Condition PASSED

SW
C-12
3

Requirement
Violation

CWE-573: Improper Following
of Specification by Caller PASSED

SW
C-12
2

Lack of Proper
Signature
Verification

CWE-345: Insufficient
Verification of Data
Authenticity

PASSED

SW
C-12
1

Missing
Protection
against
Signature
Replay Attacks

CWE-347: Improper Verification
of Cryptographic Signature PASSED

SW
C-12
0

Weak Sources
of Randomness
from Chain
Attributes

CWE-330: Use of Insufficiently
Random Values PASSED

SW
C-11
9

Shadowing
State Variables

CWE-710: Improper Adherence
to Coding Standards NOT PASSED

SW
C-11
8

Incorrect
Constructor
Name

CWE-665: Improper
Initialization PASSED

SW
C-11
7

Signature
Malleability

CWE-347: Improper Verification
of Cryptographic Signature PASSED

35

https://smartcontractsecurity.github.io/SWC-registry/docs/SWC-127
https://cwe.mitre.org/data/definitions/695.html
https://smartcontractsecurity.github.io/SWC-registry/docs/SWC-125
https://cwe.mitre.org/data/definitions/696.html
https://smartcontractsecurity.github.io/SWC-registry/docs/SWC-124
https://cwe.mitre.org/data/definitions/123.html
https://smartcontractsecurity.github.io/SWC-registry/docs/SWC-123
https://cwe.mitre.org/data/definitions/573.html
https://smartcontractsecurity.github.io/SWC-registry/docs/SWC-122
https://cwe.mitre.org/data/definitions/345.html
https://smartcontractsecurity.github.io/SWC-registry/docs/SWC-121
https://cwe.mitre.org/data/definitions/347.html
https://smartcontractsecurity.github.io/SWC-registry/docs/SWC-120
https://cwe.mitre.org/data/definitions/330.html
https://smartcontractsecurity.github.io/SWC-registry/docs/SWC-119
http://cwe.mitre.org/data/definitions/710.html
https://smartcontractsecurity.github.io/SWC-registry/docs/SWC-118
http://cwe.mitre.org/data/definitions/665.html
https://smartcontractsecurity.github.io/SWC-registry/docs/SWC-117
https://cwe.mitre.org/data/definitions/347.html

SW
C-11
6

Timestamp
Dependence

CWE-829: Inclusion of
Functionality from Untrusted
Control Sphere

PASSED

SW
C-11
5

Authorization
through
tx.origin

CWE-477: Use of Obsolete
Function PASSED

SW
C-11
4

Transaction
Order
Dependence

CWE-362: Concurrent
Execution using Shared
Resource with Improper
Synchronization ('Race
Condition')

PASSED

SW
C-11
3

DoS with Failed
Call

CWE-703: Improper Check or
Handling of Exceptional
Conditions

PASSED

SW
C-11
2

Delegatecall to
Untrusted
Callee

CWE-829: Inclusion of
Functionality from Untrusted
Control Sphere

PASSED

SW
C-111

Use of
Deprecated
Solidity
Functions

CWE-477: Use of Obsolete
Function PASSED

SW
C-11
0

Assert Violation
CWE-670: Always-Incorrect
Control Flow Implementation PASSED

SW
C-10
9

Uninitialized
Storage Pointer

CWE-824: Access of
Uninitialized Pointer PASSED

SW
C-10
8

State Variable
Default
Visibility

CWE-710: Improper Adherence
to Coding Standards NOT PASSED

SW
C-10
7

Reentrancy
CWE-841: Improper
Enforcement of Behavioral
Workflow

PASSED

SW
C-10
6

Unprotected
SELFDESTRUC
T Instruction

CWE-284: Improper Access
Control PASSED

36

https://smartcontractsecurity.github.io/SWC-registry/docs/SWC-116
https://cwe.mitre.org/data/definitions/829.html
https://smartcontractsecurity.github.io/SWC-registry/docs/SWC-115
https://cwe.mitre.org/data/definitions/477.html
https://smartcontractsecurity.github.io/SWC-registry/docs/SWC-114
https://cwe.mitre.org/data/definitions/362.html
https://smartcontractsecurity.github.io/SWC-registry/docs/SWC-113
https://cwe.mitre.org/data/definitions/703.html
https://smartcontractsecurity.github.io/SWC-registry/docs/SWC-112
https://cwe.mitre.org/data/definitions/829.html
https://smartcontractsecurity.github.io/SWC-registry/docs/SWC-111
https://cwe.mitre.org/data/definitions/477.html
https://smartcontractsecurity.github.io/SWC-registry/docs/SWC-110
https://cwe.mitre.org/data/definitions/670.html
https://smartcontractsecurity.github.io/SWC-registry/docs/SWC-109
https://cwe.mitre.org/data/definitions/824.html
https://smartcontractsecurity.github.io/SWC-registry/docs/SWC-108
https://cwe.mitre.org/data/definitions/710.html
https://smartcontractsecurity.github.io/SWC-registry/docs/SWC-107
https://cwe.mitre.org/data/definitions/841.html
https://smartcontractsecurity.github.io/SWC-registry/docs/SWC-106
https://cwe.mitre.org/data/definitions/284.html

SW
C-10
5

Unprotected
Ether
Withdrawal

CWE-284: Improper Access
Control PASSED

SW
C-10
4

Unchecked Call
Return Value

CWE-252: Unchecked Return
Value PASSED

SW
C-10
3

Floating
Pragma

CWE-664: Improper Control of
a Resource Through its
Lifetime

NOT
PASSED

SW
C-10
2

Outdated
Compiler
Version

CWE-937: Using Components
with Known Vulnerabilities PASSED

SW
C-10
1

Integer
Overflow and
Underflow

CWE-682: Incorrect Calculation PASSED

SW
C-10
0

Function
Default
Visibility

CWE-710: Improper Adherence
to Coding Standards PASSED

37

https://smartcontractsecurity.github.io/SWC-registry/docs/SWC-105
https://cwe.mitre.org/data/definitions/284.html
https://smartcontractsecurity.github.io/SWC-registry/docs/SWC-104
https://cwe.mitre.org/data/definitions/252.html
https://smartcontractsecurity.github.io/SWC-registry/docs/SWC-103
https://cwe.mitre.org/data/definitions/664.html
https://smartcontractsecurity.github.io/SWC-registry/docs/SWC-102
http://cwe.mitre.org/data/definitions/937.html
https://smartcontractsecurity.github.io/SWC-registry/docs/SWC-101
https://cwe.mitre.org/data/definitions/682.html
https://smartcontractsecurity.github.io/SWC-registry/docs/SWC-100
https://cwe.mitre.org/data/definitions/710.html

38

	Disclaimer
	Description
	Project Engagement
	Logo
	Contract Link
	Methodology
	Used Code from other Frameworks/Smart Contracts (direct imports)
	Tested Contract Files
	Source Lines
	Risk Level
	Capabilities
	Scope of Work
	Inheritance Graph
	Verify Claims
	OnlyOwner functions
	CallGraph
	Source Units in Scope
	Critical issues
	High issues
	Medium issues
	Low issues
	Informational issues
	Audit Comments
	MetaWalls Test Protocol
	SWC Attacks

